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Abstract 22 
Background: Variations in drug response between individuals have prevented us from 23 
achieving high drug efficacy in treating many complex diseases, including asthma. 24 
Genetics plays an important role in accounting for such inter-individual variations in drug 25 
response. However, systematic approaches for addressing how genetic factors and their 26 
regulators determine variations in drug response in asthma treatment are lacking.   27 
Methods: We used PANDA (Passing Attributes between Networks for Data 28 
Assimilations) to construct the gene regulatory networks associated with good responders 29 
and poor responders to inhaled corticosteroids based on a subset of 145 Caucasian 30 
asthmatic children who participated in the Childhood Asthma Management Cohort 31 
(CAMP). PANDA utilizes gene expression profiles and published relationships among 32 
genes, transcription factors (TFs), and proteins to construct the directed networks of TFs 33 
and genes. We assessed the differential connectivity between the gene regulatory network 34 
of good responders vs. that of poor responders.  35 
Results: When compared to poor responders, the network of good responders has 36 
differential connectivity and distinct ontologies (e.g., pro-apoptosis enriched in network 37 
of good responders and anti-apoptosis enriched in network of poor responders). Many of 38 
the key hubs identified in conjunction with clinical response are also cellular response 39 
hubs. Functional validation demonstrated abrogation of differences in corticosteroid 40 
treated cell viability following siRNA knockdown of two TFs and differential 41 
downstream expression between good-responders and poor-responders.   42 
Conclusions: We have identified and validated multiple transcription factors influencing 43 
asthma treatment response. Our results show that differential connectivity analysis can 44 
provide new insights into the heterogeneity of drug treatment effects. 45 
 46 
Keywords: pharmacogenomics; gene expression; inhaled corticosteroids; apoptosis; 47 
system biology 48 
 49 
Key Messages: Transcription factors showing differential connectivity between 50 
network of TFs and their targeting genes for ICS-good-responders and that for poor-51 
responders have potential to characterize the response to corticosteroid treatment. 52 
  53 
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Capsule Summary: Almost half of asthmatic patients do not respond well to standard 54 
treatment. We proposed a network approach to identify key transcription factors and their 55 
target genes that may determine differential drug response in asthmatic patients.  56 
 57 
  58 
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Introduction 59 
Asthma is the most common chronic airway disease among children and young adults(1) 60 
characterized by airflow obstruction in the small airways of affected individuals.  The 61 
prevalence of asthma and its mortality have almost doubled in the last 20 years, imposing 62 
an increasing financial burden to medical care system. Despite availability of many 63 
standard treatments, including β2-agonists, corticosteroids, and leukotriene antagonists(2-64 
4), to control asthmatic symptoms, almost half of asthmatic patients do not see 65 
improvement in symptoms.  Such variation in drug response are attributed to many 66 
factors (5, 6), including genetics (7-10). Pharmacogenomics studies assess how genetic 67 
and genomic variation affects an individual’s response to drug treatment(11-15).  68 
 69 
Corticosteroids are the backbone of asthma therapies. They reduce inflammation through 70 
both gene activation and suppression. The molecular mechanisms of action of 71 
corticosteroids have been clearly described(16).  Failure of any of the steps along the 72 
route where corticosteroids pass from the cell membrane to their target genes may result 73 
in non-responsiveness. For example, abnormalities in glucocorticoid receptor number, 74 
glucocorticoid receptor binding, or abnormalities in glucocorticoid-glucocorticoid 75 
receptor complex binding to DNA may result in poor response to corticosteroid 76 
therapy(17-20). Despite these insights, the molecular mechanisms underlying a given 77 
asthma patient’s poor-responsiveness to corticosteroid medications remain unclear.  78 
 79 
Gene differential expression, single nucleotide polymorphism, and expression 80 
quantitative trait loci (eQTL) analyses have identified multiple genes associated with 81 
asthma drug responsiveness(21-24). However, these analyses typically focus on one gene 82 
at a time. Gene expression itself is regulated by several mechanisms, such as transcription 83 
factors, microRNAs, and DNA methylation. For complex diseases such as asthma, genes 84 
and their regulators are believed to work together; network approaches investigating 85 
asthmatic drug response should include consideration of both the genes and their 86 
upstream regulators.  87 
 88 
It is well known that (1) Transcription factors (TFs) play key roles in regulating gene 89 
expression; (2) TFs usually work together to co-regulate gene expression; and (3) genes 90 
with similar functions tend to co-express. Using this information, we have previously 91 
developed a message-passing model, called PANDA (Passing Attributes between 92 
Networks for Data Assimilations)(25), which assimilates information from multiple, 93 
complementary data-types in order to reverse engineer a regulatory network. In this study, 94 
we apply PANDA to a set of immortalized B-cells, which were derived from inhaled 95 
corticosteroid treated asthmatics who were part of a large clinical trial. We hypothesize 96 
that assessing the regulatory networks of poor- and good clinical responders using 97 
PANDA could uncover the molecular mechanisms by which drug response to inhaled 98 
corticosteroids (ICS) of each patient is determined. 99 
 100 
Methods 101 
Asthma Cohort. CAMP (Childhood Asthma Management Program) was a multicenter, 102 
randomized, double-masked clinical trial designed to determine the long-term effects of 103 
three inhaled treatments for mild to moderate childhood asthma: budesonide (a 104 
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glucocorticoid used daily) and albuterol (a short-acting beta-agonist bronchodilator used 105 
as needed); nedocromil (a non-steroid anti-inflammatory agent used daily) and albuterol; 106 
and placebo and albuterol(26). The primary outcome measure was post-bronchodilator 107 
forced expiratory volume in one-second percent of predicted (FEV1%), observed over 4- 108 
to 6-year period. For this project, we selected 47 good-responders and 48 poor-responders 109 
from the 145 Caucasian CAMP subjects with available immortalized B-cells (LCLs) gene 110 
expression(15) . The definitions of good-responders and poor-responders were based on 111 
the change in FEV1% between baseline and 2-month follow-up. We used the first tertile 112 
(Q1=1.10%) and the third tertile (Q3=9.78%) of FEV1 change calculated based on the 113 
145 subjects to partition the 145 subjects to 3 groups. The 48 subjects with FEV1 change 114 
<Q1 were defined as poor-responders; the 47 subjects with FEV1 change > Q3 were 115 
defined as good-responders.    116 
 117 
LCL Microarray Experiment. 118 
As previously described(15) immortalized B-cell lines (LCL) derived from 145 asthmatic 119 
subjects from the CAMP clinical trial(26, 27) were cultured in RPMI 1640 medium and 120 
treated with dexamethasone (10-6 M) or with sham (ethanol) for 6 hours(22, 28, 29). 121 
After treatment, total RNAs were extracted and applied for microarray profiling. Gene 122 
expression levels of 22,184 gene probes for each sample were measured by using 123 
Illumina HumanRef-8 V2 chip (Illumina, San Diego, CA).   124 
 125 
Gene expression QC.  126 
The gene expression data contained 201 arrays for dexamethasone-treated LCLs and 193 127 
arrays for sham-treated LCLs. Approximately 10% of subjects had replicate arrays. We 128 
first did data quality check for the 2 treatment types of arrays separately. We then pooled 129 
the paired samples together and did log2 transformation and quantile normalization. 130 
 131 
After data quality checking, 20,917 gene probes in 17,193 genes for 145 pairs of arrays 132 
were kept. The log2 difference of expression levels between dexamethasone-treated cell 133 
lines and sham-treated cell lines was used to measure the effect of drug treatment on the 134 
gene expression. Furtherdetails about data quality control can be found in the 135 
Supplementary Documents. 136 
 137 
PANDA algorithm. 138 
PANDA (Passing Attributes between Networks for Data Assimilation) is a message-139 
passing model to construct directed networks between TFs and genes using multiple 140 
sources of genomic information to predict regulatory relationships(25). The nodes in a 141 
PANDA network are TFs or genes. The directed edges extend from TFs to genes. Each 142 
edge has a weight value indicating the probability that a TF regulates a gene.  143 
 144 
To seed the PANDA algorithm we used a mapping between TF motifs and target genes. 145 
Descriptions of the creation of this mapping can be found in Glass et al. (2014 and 146 
2015)(30, 31). This mapping includes 255,051 pairs of (TF, gene) and 13,979 unique 147 
genes. 148 
 149 
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There are 13,191 genes shown in both our gene expression data and the mapping file. 150 
These 13,191 genes correspond to 240,939 pairs of (TF, gene) and correspond to 16,368 151 
gene probes in our gene expression data. 152 
 153 
Statistical Analysis. 154 
 155 
We first evaluated the effect of glucocorticoid on gene expression by comparing the 156 
PANDA network for the 145 dexamethasone-treated cell lines with the network for their 157 
corresponding controls, 145 sham-treated cell lines. Specifically, we obtained a PANDA 158 
network for dexamethasone-treated cell lines and a PANDA network for sham-treated 159 
cell lines, respectively. In each network, edges connect TFs and their targeted genes. Due 160 
to the differences of gene expression between dexamethasone-treated cell lines and sham-161 
treated cell lines, the edges and edge weights between the two networks are not the same. 162 
We call a TF as differentially connected if the TF connects to different sets of genes 163 
between the two PANDA networks. Differential connectivity between the 2 PANDA 164 
networks (dexamethasone vs. sham) was revealed. We then compared the PANDA 165 
networks between the 47 good-responders and 48 poor-responders, focusing on the 166 
differential connectivity between the log2-difference in expression response 167 
(log2(dexamethasone) – log2(sham)) as the expression metric for a given individual.  168 
 169 
Denote di = wi,resp - wi,nonresp, where wi,resp is the edge weight for the i-th pair of (TF, gene) 170 
for the good responders and wi,nonresp is the edge weight for the corresponding pair for the 171 
poor responders. We constructed the good-responder network of TFs and their targeted 172 
genes by adding edges to (TF, gene) pairs corresponding to the largest 10000 di. We then 173 
constructed the poor-responder network of TFs and their targeted genes by adding edges 174 
to (TF, gene) pairs corresponding to the smallest 10000 di. Denote Sg as the set of TFs in 175 
the good-responder network. Denote Sp as the set of TFs in the poor-responder network. 176 
For the common TFs in both Sg and Sp, we calculated the number of edges that a TF has 177 
for good-responder network and poor-responder network, separately. Denote them as 178 
nEdge(g) and nEdge(p), respectively. We then calculated the difference of the edges 179 
nDiff=nEdge(g) – nEdge(p) and ratio of edges nRatio=nEdge(g)/nEdge(p) for each TF. 180 
The difference gives an absolute magnitude, while the ratio provides a gene specific 181 
difference in the magnitude of differential regulation for a TF. For differentially 182 
connected TFs (i.e. TFs in both good-responder network and poor-responder network), 183 
we tested if they are differentially expressed between good responders and poor 184 
responders using two sample t test. 185 
 186 
To assess the statistical significance of the ratio of edges, we performed a permutation 187 
analysis. Specifically, we performed 1000 randomizations wherein we randomly divided 188 
LCLs into two groups and generated two corresponding networks. Denote Sg(r) and Sp(r) 189 
as the set of TFs in the top 10000 pairs of (TF, gene) in these two “random” networks. As 190 
above, we identified the TFs in Sg(r) and Sp(r) , calculated the number of edges for those 191 
TFs in Sg(r) and Sp(r),  denoted as nEdge(gr) and nEdge(pr), respectively, and 192 
determined the ratio of edges, nEdge(gr)/nEdge(pr), for each TF. For each TF with a ratio 193 
greater than 1, we counted the total number of permutations where  194 
nEdge(gr)/nEdge(pr)>nEdge(g)/nEdge(p); for TFs with a ratio less than 1, we counted the 195 
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total number of permutations where  nEdge(gr)/nEdge(pr)<nEdge(g)/nEdge(p). We then 196 
divided by the number of permutations in which that TF appears in the top (TF,gene) 197 
pairs to estimate how many times “by chance” one would expect to find a ratio more 198 
extreme that what was observed. 199 
 200 
Pathway Enrichment Analysis. 201 
We obtained for each network the set of genes that were regulated by the TFs with 202 
differential connectivity (i.e., TFs with large absolute difference of edge weights between 203 
the network of good-responders and that of poor-responders). We then compared the 204 
enriched pathways of the 2 sets of genes by using the functional annotation tool: the 205 
Database for Annotation, Visualization and Integrated Discovery (DAVID)(32, 33). We 206 
expected that the 2 sets of enriched pathways would be different. 207 
 208 
 Gene silencing of TFs and dexamethasone treatment in LCLs 209 
The TFs having most differential regulation may determine if a patient is a good-210 
responder of ICS treatment or not. We chose to validate two key TFs (NFKB1 and JUN) 211 
with a different ratio of edges in good vs. poor responders using a knock down 212 
experiment. These 2 TFs were at polar ends of the ratio of the numbers of edges that a TF 213 
has in good-responder network to those in poor-responder network.   214 
 215 
We hypothesized that knocking down the NFKB1 paralog (RELA) or JUN would result in 216 
modulation of the difference between poor-responders and good-responders. To validate 217 
this hypothesis, we cultured LCLs from 7 good responders and 7 poor responders in 218 
RPMI 1640 medium (Life Technologies) supplemented with 15% fetal bovine serum 219 
(FBS). One siRNA with best knock down efficiency in three individual siRNAs (Life 220 
Technologies) targeting JUN or RELA was chosen for the gene silencing experiment. 221 
Gene targeting siRNA and negative contol siRNA were transfected into LCL cell lines 222 
using 4D-Nucleofector X kit (Lonza) with Nucleofector Program (EC-117). Optimal 223 
amount of siRNA (20-100 pmol siRNA / 106 cells) were trasnsfection in each reaction. 224 
Twenty-four hours after transfection, cells were seeded into serum free RPMI 1640 225 
medium to starve for 24 hours followed by dexamethasone or vehicle control treatment (1 226 
µM) for 2 hours. Total RNA was extracted from 7 good responder cell lines and 7 poor 227 
responder cell lines with or without dexamethasone treatment. By RT-PCR, we measured 228 
expression levels of 4 down-stream genes (CEBPD, MANBA, PPT2, and TCP1) for 229 
NFKB1 silencing, 5 down-stream genes (ACOT8, ACSL3, MTA2, PDGFR8, and 230 
TMEM53) of JUN, and one house-keeping gene (GAPDH). RELA and JUN were 231 
measured for detecting the knock down efficiency. We also measured expression of 232 
NR3C1 gene that encodes the glucocorticoid receptor to determine whether there is 233 
endogenous expression difference of NR3C1 among good and poor responders. We 234 
generated histograms of the knock-down efficiencies of RELA and JUN across subjects. 235 
We also performed western blotting to confirm TFs knockdown efficiency in LCL lines. 236 
The gene expression level of a gene in PCR analysis is inversely proportional to CT level, 237 
where CT stands for cycles to reach to threshold. For a given gene, let delta CT = 238 
CT.gene – CT.GAPDH, where CT.gene is the CT level of the gene and CT.GAPDH is the 239 
CT level of GAPDH. For each down-stream gene, we performed general linear model 240 
analysis to test if delta CT levels for good-responders are different from those for poor-241 
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responders after dexamethasone treatment, adjusted for knock-down status (with TFs 242 
siRNA knock-down versus control siRNA knock-down)..  243 
 244 
Noting the key difference in apoptosis in the ontology analysis (Figure 3 and 245 
Supplemental Table 2), that is, pro-apoptosis enriched in network of good responders 246 
and anti-apoptosis enriched in network of poor responders, we also measured cell 247 
viability in LCL lines after dexamethasone treatment. The cells were transfected by two 248 
different JUN siRNA (JUN siRNA-1 and JUN siRNA-2), RELA siRNA and control 249 
siRNA. After starving for 24 hours, each siRNA transfected cells were split into 8 wells 250 
and each 4 wells were treated with 0 µM (ethanol, solution vehicle) or 50 µM 251 
dexamethasone for 24 hours. The cell viability was detected by alamarBlue assay kit 252 
(ThermoFisher DAL1100). The results were normalized to relative ethanol treated cells.  253 
 254 
Results 255 
Table 1 shows the population characteristics for the 145 subjects, the 48 poor-responders, 256 
and the 47 good-responders, separately. There are no significant differences between 257 
good-responders and poor-responders for age, gender, or baseline FEV1 as a percent of 258 
predicted (FEV1%). The two groups have significant difference between ∆FEV1 (the 259 
change in FEV1% between baseline and 2-month follow-up) based on the definition of 260 
the two groups. 261 
 262 
The networks of (TF, gene) for dexamethasone-treated LCLs and for sham-treated LCLs 263 
are shown in Figures 1A and 1B, respectively. The complete set of TFs and their 264 
targeted genes are shown in Supplemental Table 1. The differential connectivity 265 
between the two networks indicates the effect of dexamethasone treatment on the 266 
transcription factor regulation of genes.  267 
 268 
 269 
We next evaluate the differential connectivity between the network of good-responders 270 
and that of poor responders. It would be difficult to visualize differential connectivity if 271 
we used all top 10000 (TF, gene) pairs. Hence, we first illustrate the differential 272 
connectivity by using only the top 50 pairs of (TF, gene) that had the largest absolute 273 
differences of edge weights between the 2 networks (Figure 2). In Figure 2, the red 274 
edges are from the network of good-responders and the blue edges are from the network 275 
of poor-responders. Figure 2 indicates that the 2 networks demonstrate extensive 276 
difference in connectivity. Interestingly, seven out of the nine hot spots in Supplemental 277 
Figure 1 (networks of dexamethasone treatments) are also in Figure 2 (networks of 278 
responsiveness), suggesting that key regulators of overall corticosteroid response are also 279 
important in regulating the clinical extremes of response. The target genes in good 280 
responders are listed in Supplemental Table 3 and the targets in poor responders are 281 
listed in Supplemental Table 4. 282 
 283 
The set Sg (for good responders) contains 32 TFs and the set Sp (for poor responders) 284 
contains 35 TFs. There are 31 TFs appearing in both Sg and Sp, including JUN and 285 
NFKB1 (Table 2). NFKB1 has the highest ratio (nEdge(g)/nEdge(p)=20, p=0.039 by 286 
permutation analysis) and JUN has the lowest ratio (nEdge(g)/nEdge(p)=0.29, p=0.019 287 
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by permutation analysis). Among the 31 unique TFs, 6 TFs have permutation p-value < 288 
0.05. For each of the 105 TFs in this study, we performed two-sample t-test to test if a TF 289 
is differentially expressed between dexamethasone-treated LCLs and sham-treated LCLs. 290 
Fifty-one of the 105 TFs have two-sample t-test p-value < 0.05 (Supplemental Table 5). 291 
Sixteen of the 31 common TFs are differentially expressed between dexamethasone-292 
treated LCLs and sham-treated LCLs (Table 2). Of note, neither JUN nor NFKB1 were 293 
differentially expressed between dexamethasone-treated LCLs and sham-treated LCLs. 294 
We obtained the QQplot of –log10 (t-test p-value) between non-differentially connected 295 
TFs and differentially connected TFs (Supplemental Figure 3), which showed no 296 
significant difference between the 2 sets of TFs in terms two-sample t-test p-values. We 297 
also performed Fisher’s exact test to assess if the differential expression of TFs (TFs with 298 
two-sample t-test p-value<0.05 versus TFs with p-value≥0.05) is associated with 299 
differential connection (TFs that are in both good-responder network and poor-responder 300 
network versus TFs that are not in both networks). Sixteen TFs are both differentially 301 
expressed (DE) and differentially connected (DC); 39 are neither DE nor DC; 35 TFs are 302 
DE, but not DC; and 15 TFs are DC, but not DE. The p-value for the Fisher’s exact test is 303 
0.8308. Both parallel boxplots and Fisher’s exact test showed no association between 304 
differential expression and differential connectivity of TFs in two networks of good 305 
responders and poor responders.  306 
 307 
DAVID functional annotation analysis showed that (1) the 164 genes that are only in Sg 308 
(for good responders) were enriched in 67 biological processes, including immune 309 
response and pro-apoptosis; and (2) the 225 genes that are only in Sp (for poor responders) 310 
were enriched in 33 biological processes, including anti-apoptosis. There are 2 311 
overlapping biological processes (DNA metabolic process and DNA repair). Figure 3 is 312 
the heatmap of –log10(p-value) for enriched GO biological processes, where the p-values 313 
are for testing if a biological process is enriched or not based on the list of genes in the 314 
top 500 pairs of (TF, gene).  315 
 316 
We next experimentally assessed the validity of regulatory networks built using PANDA. 317 
We hypothesized that these key TFs that differentiate the good responder network from 318 
poor responder network contribute to differential effects of dexamethasone  on cells. We 319 
assessed functional response along two lines: differential targeting of downstream gene 320 
expression between good and poor responders and differential cell viability (since 321 
apoptosis was a key phenotype differentiating response status in our pathway 322 
annotations). Among 31 TFs revealed by PANDA method (Table 2), we choose NFKB1 323 
and JUN for validation. Knock down efficiencies of RELA and JUN across subjects are 324 
shown in Supplemental Figure 2, which indicates that RELA knock-down efficiencies 325 
are good (median=80%, range=71% - 85%) and JUN knock-down is less efficient 326 
(median=32%, range=8% - 48%). Western blotting image about the knock-down 327 
efficiency is shown in Supplemental Figure 5. 328 
 329 
The results of functional validation analysis of differential targeting showed that one of 330 
the four down-stream genes (CEBPD) of NFKB1 has statistically lower delta CT level 331 
(i.e. higher expression level) in good responders than in poor responders and that one of 332 
the five tested down-stream genes (TMEM53) of JUN has statistically higher delta CT 333 
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level (i.e., lower expression level) in good responders than in poor responders, after 334 
dexamethasone treatment and adjusting for siRNA knockdown (Table 3 and Figure 4). 335 
The parallel boxplots of delta CT levels for all genes are shown in Supplemental Figure 336 
6 and Supplemental Figure 7. For the cell viability assays, we compared the mean of the 337 
baseline-adjusted cell viability of good-responder with that of poor-responder for each of 338 
the 4 cell types (negative control, RELA siRNA, JUN siRNA -1 and JUN siRNA-2) with 339 
50 µM dexamethasone treatment. Supplemental Figure 4a shows the histogram of the 340 
cell viability adjusted for baseline for the 4 replicates. For negative control, there exists 341 
significant difference between good-responders and poor-responders in terms of cell 342 
viability. However, after knocking down RELA or JUN, the difference markedly 343 
decreased (Supplemental Figure 4b).  344 
 345 
Discussion 346 
In this article, we showed that (1) PANDA can be applied to gene expression data 347 
generated from immortalized B-cell lines; (2) many TFs hubs obtained from  (TF, gene) 348 
networks characterizing the corticosteroid treatment effects on gene expression globally 349 
also appeared in (TF, gene) networks characterizing the ICS-responsiveness specifically; 350 
(3) the network of good responders and that of poor responders have different 351 
connectivity and distinct ontologies; and (4) one down-stream gene (CEBPD) of NFKB1 352 
and one down-stream gene (TMEM53) of JUN are differentially expressed between good 353 
responders and poor-responders adjusting for siRNA knock-down, after dexamethasone 354 
treatment.  355 
 356 
 357 
In the analysis of corticosteroid response alone, we identified nine key “hub” TFs, each 358 
with at least nine differentially connected edges between treated and untreated (sham) 359 
cells. This suggests that these TFs may be transcriptional regulatory “hot spots”. A 360 
literature search indicated that there is biologic plausibility for a role in glucocorticoid 361 
signaling for at least seven of the nine TFs (Supplemental Figure 1)(34-41). For 362 
example, ETS1 is a regulator of human glucocorticoid receptor 1A promoter(42). 363 
 364 
The differential connectivity between the network of (TF, gene) we obtained for ICS-365 
good responders and that for ICS-poor responders revealed multiple TFs that may help to 366 
explain why some asthmatic children do not respond well to ICS treatment. From a 367 
mechanistic perspective, it is assuring that many of these TFs also play a role in the 368 
differential connectivity between the network of dexamethasone-treated cells and that of 369 
sham-treated cells. Indeed, seven of the nine key “hub” TFs in differentially connected in 370 
dexamethasone vs. sham were also present in the analysis of clinical responders (c.f. 371 
Supplemental Figure 1). These include GATA2, ETS1, YY1, and NFIC1, which all have 372 
well documented roles in corticosteroid biology(35, 36, 38-40). These findings support 373 
the notion that factors innately involved in the global response to corticosteroids may also 374 
modulate treatment response differences between subjects. Further studies of these TFs 375 
might help find a way to improve the efficiency of current ICS treatment. 376 
 377 
A key feature of PANDA is the emphasis on differential connectivity as compared to 378 
differential expression of the transcription factors. Therefore, it is not surprising that the 379 
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same sets of TFs regulated different sets of downstream genes between the good 380 
responders and poor responders. Hence, the two networks had different ontologies. For 381 
the good responders, these included regulation of the immune response and metabolic 382 
processes (Figure 3). However, the most striking of the ontologic differences was that 383 
the network within the good clinical responders supported “pro-apoptosis” pathways, 384 
whereas the network derived from the poor responders indicated the presence of “anti-385 
apoptosis” pathway regulation. Corticosteroid induced apoptosis is a known key 386 
mechanism related to resolution of asthmatic inflammation and helps to differentiate 387 
severe vs. non-severe asthma(43-46).  Our findings add to this literature by eliciting the 388 
differential interactions between key transcription factors and their downstream targets as 389 
they modulate corticosteroid induced apoptosis in good and poor responders.  390 
 391 
Given this background, we chose to validate key TFs with a different ratio of edges in 392 
good vs. poor responders using both a downstream targeting approaches and a cellular 393 
apoptosis assay. In this functional validation analysis, we knocked-out two key TFs 394 
(NFKB1 and JUN) from our network analysis using siRNA. NFKB1 (nuclear factor of 395 
kappa light polypeptide gene enhancer in B-cells 1) encodes a 105 kD protein which can 396 
undergo cotranslational processing by the 26S proteasome to produce a 50 kD protein. 397 
Inappropriate activation of NFKB1 has been associated with a number of inflammatory 398 
diseases while persistent inhibition of NFKB1 leads to inappropriate immune cell 399 
development or delayed cell growth.  JUN (jun proto-oncogene) encodes a protein that is 400 
highly similar to the viral protein, and which interacts directly with specific target DNA 401 
sequences to regulate gene expression. Molecular network analysis of endometriosis 402 
reveals a role for c-Jun-regulated macrophage activation(47). In the functional validation 403 
analysis, we identified one downstream target (CEBPD) of NFKB1 and one downstream 404 
targets (TMEM53) of JUN that are statistically differentially expressed following 405 
dexamethasone treatment in good vs. poor responders, supporting differential 406 
connectivity of the transcription factors leading to different downstream gene targeting, 407 
as exemplified by differential expression, between good and poor ICS responders. We 408 
also observed that without knocking-out the NFKB1 paralog (RELA) or JUN, the cell 409 
viability of good responders is statistically greater from that of poor responders. 410 
Importantly, such differences were largely abrogated after depletion of RelA or JUN by 411 
siRNA. Overall, this functional data suggest that RelA and JUN are playing important 412 
roles that determine differential cellular response to dexamethasone in these two groups 413 
of LCLs and, through generalization, to the differences in clinical response underlying 414 
the two groups. Thus, a malfunction of NFKB1 or JUN may explain the poor-415 
responsiveness of ICS treatment and that modulation of the connectivity related to these 416 
genes may be of therapeutic benefit. Further investigation is warranted.  417 
   418 
 419 
Our study has a couple of limitations. One limitation of the present study is that the 420 
permutation p-values in Table 2 are modest. We obtained Benjamini-Hochberg (BH) 421 
corrected p-values for the 31 TFs that we identified as targeted in the top/bottom edges to 422 
control for multiple testing (Supplemental Table 6). Although no TFs are significant at a 423 
BH-pvalue<0.05, the same six TFs we noted as nominally significant previously 424 
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(including FEV, GATA3, JUN, NFATC2, NFKB1, and SPI1) were identified at a BH-425 
pvalue<0.15.  426 
 427 
Additionally, when we investigated the siRNA mediated changes in expression, we 428 
identified only one gene for each of the two TFs (NFKB1 and JUN). While only one 429 
downstream gene for each TF was validated, there are plausible biologic and 430 
experimental reasons for this. From an experimental perspective, we note that the 431 
network was built upon >200 LCL cell lines and we only choose 7 cell lines for 432 
validation due to feasibility reasons. Therefore, it is likely the sum total of target genes as 433 
inferred by the network analysis as derived from many samples may not be co-regulated 434 
by the specific TF in exactly the same fashion as a single cell line under the same 435 
condition. Biologically, we also note that while there is usually a one-to-many 436 
relationship between a given TF and its downstream targets, there is often also a co-437 
regulation of gene expression by multiple TFs. Therefore it is entirely possible that 438 
siRNA knockdown of a TF may not significantly alter the expression of such a gene. 439 
Both of these points suggest that the regulation of gene expression remains complex and 440 
that functional validation of networks remains imperfect. 441 
 442 
To assess if the results of the network analysis is robust to the choice of the number of 443 
top edges used to define the networks, we calculated log2 ratio of the number of edges 444 
that a TF has in good-/poor- responder network for different numbers of top edges used 445 
(Supplemental Table 7). We note that the ratios and especially the direction of 446 
enrichment are largely stable across different numbers of edges, especially as the number 447 
of selected edges increases (leading to more robust estimates). In addition, the higher 448 
thresholds (more edges) are likely more reliable in a sense since there is more overall 449 
information with greater numbers of edges (even if these edges are not the highest weight 450 
edges). 451 
 452 
In permutation study, some TFs might be more easily found in the top and bottom edges 453 
compared to others. However, detailed examination shows that of the 31 TFs in Table 2, 454 
25 appear in both the positive and negative edges in all 1000 permutations and 29 appear 455 
in at least 800 permutations. The last column of Supplemental Table 6 includes the 456 
number of permuted pairs of networks for which each TF appears in both the positive and 457 
negative set of edges. 458 
 459 
While we used immortalized B-cells for this analysis, these cells were directly derived 460 
from clinical subjects participating in CAMP. Moreover, we recently described that the 461 
glucocorticoid receptor (the primary receptor for ICS), upon stimulation with 462 
dexamethasone, functions differently in these cells in good clinical inhaled corticosteroid 463 
responders vs. poor responders(48). Using immortalized cell lines allows an analysis to 464 
be repeated many times on genetically identical cells, which is desirable and cost-465 
effective for repeatable scientific experiments. One potential limitation of using 466 
immortalized cell lines is that immortalization might alter the biology of the cell. 467 
However, B-lymphocytes are crucial inflammatory mediators in asthma. Moreover, Ding 468 
et al.(49) recently reported that 70% of cis-eQTL in LCLs is shared with skin. 469 
Furthermore, our analysis showed the differential connectivity between good-responders 470 
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and poor-responders. Combined, this evidence suggests that the results from a LCL 471 
analysis may also have large overlap with those from an analysis based on primary cells.  472 
 473 
Conclusion 474 
In conclusion, we have used PANDA to elucidate differences between good vs. poor 475 
clinical corticosteroid responders in asthma. Our functional results from two key 476 
transcription factors suggest that differential drug response networks built by PANDA 477 
method are valid; further validation of other novel transcription regulators may yield 478 
additional biologic and translational insights into corticosteroid response.  Our results 479 
indicate that biology between responders and poor-responders does not necessarily 480 
emanate from differential expression, but may instead be from differential connectivity. 481 
 482 
 483 
  484 
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Figure legends: 
 
Figure 1. The network of TFs and their targeting genes output by PANDA algorithm based on dexamethasone-treated LCSs (Figure 1a) 
and based on sham-treated LCLs (Figure 1b). The edges are directed from TFs (circles) to their targeting genes (rectangles). The 6 key 
TFs that are highlighted in Suppl. Figure 1 are labeled here. 
 
Figure 2. We illustrate the differential connectivity by using the networks of top 50 (TF, gene) pairs in terms of the absolute difference 
of the edge weights between the 2 networks. The red edges are for the network of responders; the blue edges are for the network of 
poor-responders.  
 
Figure 3. Heatmap of –log10(p-value) for enriched biological processes, where the p-values are for testing if a biological process is 
enriched or not based on the list of genes in the top 500 pairs of (TF, gene). Yellow color means larger -log10(p-value) compared to 
red color. 
 
Figure 4. Parallel boxplots of normalized gene expression across different combination of Response status (good vs poor) and knock-
down status (control knock-down vs siRNA knock-down) for RELA knock-down experiment and JUN knock-down experiment, 
Respectively.  
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Table 1. Population characteristics for the 145 Caucasian CAMP children 
 

 All  Poor responders Good-responders p-value (nonresp vs 
resp) 

Variable N=145 N=48 N=47  
Age (year) 8.81±2.13 8.49±2.09 8.99±2.20 0.29 
Female (n, %) 64, 44% 23, 48% 25, 53% 0.76**  
FEV1% 1.62±0.45 1.620.43 1.51±0.47 0.18 
∆FEV1* 7.13±14.66 -5.22±6.77 22.12±14.86 <0.01 

*: the change in FEV1% between baseline and 2-month follow-up.  
**: For comparing female proportion between poor-responders and good-responders, we applied chi-squared test; for other 
comparisons, we applied Wilcoxon’s rank sum test. 
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Table 2. The characteristics of the 31 unique TFs in both Sg and Sp. 
TF nEdge(g) nEdge(p) nDiff nOverlap nRatio pval.Perm stat.DiffExprs pval.DiffExprs 
TFAP2A 565 287 278 0 1.97 0.309 -2.42 1.67E-02 
GATA3 548 817 -269 0 0.67 0.042 3.65 3.60E-04 
SP1 893 630 263 2 1.42 0.249 -4.09 6.84E-05 
SOX5 749 995 -246 6 0.75 0.160 -1.21 2.29E-01 
ARID3A 760 998 -238 3 0.76 0.164 -15.15 2.17E-32 
NFATC2 423 633 -210 0 0.67 0.022 -1.52 1.30E-01 
PAX5 346 151 195 0 2.29 0.327 -0.96 3.37E-01 
NKX2-5 273 373 -100 0 0.73 0.207 -1.20 2.33E-01 
PRRX2 546 643 -97 1 0.85 0.163 -0.44 6.64E-01 
AHR 292 386 -94 0 0.76 0.153 1.78 7.67E-02 
BRCA1 230 138 92 0 1.67 0.075 5.48 1.68E-07 
YY1 237 146 91 0 1.62 0.110 0.42 6.77E-01 
SPI1 251 163 88 0 1.54 0.033 -8.13 1.29E-13 
ARNT 223 309 -86 0 0.72 0.081 -2.52 1.27E-02 
NFIC 339 263 76 0 1.29 0.147 -4.05 8.03E-05 
NKX3-1 228 303 -75 0 0.75 0.257 -2.85 4.90E-03 
SOX10 352 280 72 1 1.26 0.210 -0.60 5.50E-01 
EGR1 328 371 -43 0 0.88 0.374 -5.31 3.67E-07 
MAFG 60 18 42 0 3.33 0.054 -7.61 2.48E-12 
NFE2L1 60 18 42 0 3.33 0.054 -6.26 3.68E-09 
GATA2 701 660 41 0 1.06 0.288 -0.25 8.07E-01 
ETS1 650 609 41 0 1.07 0.293 8.42 2.33E-14 
SPIB 91 60 31 0 1.52 0.132 -18.52 4.10E-41 
KLF4 46 18 28 0 2.56 0.381 -0.92 3.60E-01 
FEV 34 11 23 0 3.09 0.046 -0.45 6.55E-01 
ZNF354C 697 677 20 0 1.03 0.360 1.29 2.00E-01 
NFKB1 20 1 19 0 20.00 0.039 -1.38 1.69E-01 
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GABPA 34 17 17 0 2.00 0.225 -4.20 4.56E-05 
CTCF 13 4 9 0 3.25 0.409 -0.71 4.76E-01 
JUN 2 7 -5 0 0.29 0.019 -1.22 2.24E-01 
NFYA 7 8 -1 0 0.88 0.451 -4.87 2.77E-06 
nDiff=nResp-nNonResp. nRatio=nResp/nNonResp. pval.Perm=p-value for the significance of nRatio by permutation.  Six TFs 
(GATA3, NFATC2, SPI1, FEV, NFKB1, and JUN) have pval.Perm<0.05. stat.DiffExprs and pval.DiffExprs are test statistic and p-value 
for testing if a TF is differentially expressed between dexamethasone-treated cell lines and sham-treated cell lines by using two sample t test. 
Positive stat.DiffExprs indicates mean expression levels of the TF in dexamethasone-treated cell lines is higher than that in sham-treated cell lines. 
Sixteen TFs have pval.DiffExprs < 0.05. 
 
Table 3. P-values for testing if expression level s of a down-stream gene normalized by GAPDH for good-responders are different from those for 
poor-responders. 
TF down-stream gene statistic p-value 
RELA MANBA  0.75 4.59E-01 
RELA NR3C1 1.48 1.45E-01 
RELA PPT2 0.00 1.00E+00 
RELA TCP1 -1.95 5.60E-02 
RELA CEBPD 4.77 1.47E-05 
JUN NR3C1 -0.64 5.27E-01 
JUN MTA2 -2.01 5.00E-02 
JUN TMEM53 -2.72 8.88E-03 
JUN ACOT8 -1.38 1.73E-01 
JUN PDGFR8 -0.71 4.83E-01 
JUN ACSL3 -1.30 2.00E-01 
Statistic: the t-value for testing if the expression level in good responder is different from that in poor-responder by using general 
linear model. Negative value of ‘statistic’ means the expression level in good responder is higher than that in poor-responder. 
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